专利类型:发明专利
语 言:中文
申 请 号:CN201610361515.3
申 请 日:20160526
申 请 人:重庆大学
申请人地址:400044 重庆市沙坪坝区沙正街174号
公 开 日:20161012
公 开 号:CN106022383A
代 理 人:黄河
代理机构:重庆博凯知识产权代理有限公司 50212
摘 要:本发明提供了一种基于方位角相关动态字典稀疏表示的SAR目标识别方法,其首先估计作为测试样本的SAR图像的方位角,然后根据这个方位角估计值算出一个相关方位角范围,从而基于各个训练样本的稀疏特征矩阵的集合构成的稀疏特征训练样本集,令稀疏特征训练样本集之中方位角值在相关方位角范围之外的训练样本的稀疏特征矩阵设置为零矩阵,仅保留方位角值在相关方位角范围以内的训练样本的稀疏特征矩阵,由此构成测试样本对应的稀疏特征方位角相关动态字典,然后再进行稀疏表示分类识别,大大减少稀疏编码和稀疏重构的计算量,提升了识别处理效率,同时也减少了方位角不相关的训练样本对测试样本目标识别的干扰,使得识别准确率也得以提高。
主 权 项:基于方位角相关动态字典稀疏表示的SAR目标识别方法,其特征在于,包括如下步骤:1)对于多类不同的已知雷达目标,分别针对每一类在0°~360°方位角范围内分布采集多个已知雷达目标的SAR图像作为训练样本,并分别记录各个训练样本的方位角值;2)分别提取各个类别中各个训练样本的稀疏特征矩阵,将针对每个训练样本所提取的稀疏特征矩阵作为一个稀疏特征训练样本,从而由提取的各个类别各个训练样本的稀疏特征矩阵的集合构成稀疏特征训练样本集;3)针对一个待测雷达目标,采集该待测雷达目标的SAR图像作为测试样本,并分别计算测试样本与各个训练样本的图像像素分布相关性,取与测试样本的图像像素分布相关性最大的训练样本的方位角值作为测试样本的方位角估计值gy,从而确定测试样本的相关方位角范围φ(gy)=[(gy?Δg),(gy+Δg)];Δg表示预设定的方位角浮动范围值;4)将稀疏特征训练样本集之中方位角值在相关方位角范围φ(gy)之外的训练样本的稀疏特征矩阵设置为零矩阵,仅保留方位角值在相关方位角范围φ(gy)以内的训练样本的稀疏特征矩阵,由此构成测试样本对应的稀疏特征方位角相关动态字典;5)提取测试样本的稀疏特征矩阵,利用测试样本对应的稀疏特征方位角相关动态字典中的各个稀疏特征训练样本建立稀疏线性方程,对测试样本的稀疏特征矩阵进行稀疏线性表示,并求解得到该稀疏线性方程的系数向量,作为测试样本的稀疏系数向量;6)针对每个测试样本的稀疏系数向量,分别提取其稀疏系数向量中对应于稀疏特征方位角相关动态字典中每一类已知雷达目标的类别稀疏系数向量,然后分别计算利用每一类已知雷达目标对应的类别稀疏系数向量和测试样本对应的稀疏特征方位角相关动态字典通过稀疏线性方程对测试样本的稀疏特征矩阵进行稀疏重构的重构误差,将重构误差最小的类别稀疏系数向量所对应的一个已知雷达目标类别判定为测试样本对应的待测雷达目标所属的雷达目标类别,实现对待测雷达目标的类别识别。
关 键 词:
法律状态:公开
IPC专利分类号:G06K9/62(2006.01)I