浏览量:0

一种基于MCA和字典学习的车牌超分辨率重构方法

专利类型:发明专利 

语 言:中文 

申 请 号:CN201510190609.4 

申 请 日:20150421 

发 明 人:尹宏鹏柴毅李艳霞邢占强 

申 请 人:重庆大学 

申请人地址:400044 重庆市沙坪坝区沙正街174号 

公 开 日:20150826 

公 开 号:CN104867116A 

代 理 人: 

代理机构: 

摘  要:该发明提供了一种基于MCA和字典学习的车牌超分辨率重构方法,把车牌图像视为结构部分和纹理部分的线性组合,利用高、低分辨率字典对低分辨率的车牌图像进行超分辨率重构。具体步骤如下:步骤一:将低分辨率测试车牌图像插值到与目标高分辨率图像相同尺寸,采用MCA算法把插值图像分解成纹理部分和结构部分;步骤二:低分辨率图像通过KSVD方法得到低分辨率字典和稀疏系数,利用系数和高分辨率图像计算高分辨率字典。步骤三:利用高、低分辨率字典对分块后的低分辨率图像进行超分辨率重建,合并重建后的图像块得到高分辨率图像的纹理部分,与插值图像结构部分相加,即得到高分辨率图像。本发明重构得到的车牌图像能够较好地保持图像的边缘、纹理信息。 

主 权 项:一种基于MCA和字典学习的车牌超分辨率重构方法,其特征在于包括下述步骤:步骤一:将低分辨率测试图像y插值到与目标高分辨率图像相同的尺寸,得到插值图像Y,并采用MCA算法把插值图像Y分解成纹理部分Yt和结构部分Ys。步骤二:低分辨率图像特征块通过KSVD方法得到低分辨率字典和稀疏表示系数,利用系数和高分辨率图像特征块计算得到高分辨率字典。步骤三:对低分辨率图像y分块并提取低频特征,利用该高、低分辨率字典对对低分辨率图像块进行超分辨率重建,得到高频特征图像块;合并所有高频图像块,在图像块之间的重叠部分取均值,得到目标高分辨率图像的纹理部分Xt,Xt与插值图像结构部分Ys相加,得到目标高分辨率图像X。 

关 键 词: 

法律状态:公开 

IPC专利分类号:G06T5/00(2006.01)I