浏览量:0

基于迭代均值聚类的深度样本学习方法

专利类型:发明专利 

语 言:中文 

申 请 号:CN201810558766.X 

申 请 日:20180601 

发 明 人:李勇明郑源林王品颜芳张成李新科 

申 请 人:重庆大学 

申请人地址:400044 重庆市沙坪坝区沙正街174号 

公 开 日:20181123 

公 开 号:CN108877947A 

代 理 人:陈千 

代理机构:成都蓉域智慧知识产权代理事务所(普通合伙) 51250 

摘  要:本发明公开了一种基于迭代均值聚类的深度样本学习方法,按照以下步骤进行:S1:选择训练数据,并通过N次迭代均值聚类算法处理得到N+1层训练样本子集,N≥1;S2:将每层训练样本子集独立进行回归训练,得到N+1个回归器;S3:选择验证数据,并将验证数据分别送入N+1个回归器中得到N+1个验证结果;S4:基于加权融合机制确定每个回归器对应的最佳权重(w0,w1,…,wN);S5:获取测试数据,并利用N+1个回归器以及对应的最佳权重得到最终的预测结果。其效果是:将学习样本经过多次迭代均值聚类得到不同的训练样本数据集,然后分别进行训练和学习,在相同样本数量的情况下,有效增加了模型的学习能力,提升了分类或预测的准确性。 

主 权 项:1.一种基于迭代均值聚类的深度样本学习方法,其特征在于按照以下步骤进行:S1:选择训练数据,并通过N次迭代均值聚类算法处理得到N+1层训练样本子集,N≥1;S2:将每层训练样本子集独立进行回归训练,得到N+1个回归器;S3:选择验证数据,先将验证样本与每一层的样本空间进行欧氏距离相似性计算,从而将该验证样本转化为该层样本空间与之最相似的样本,并将这些样本分别送入N+1个回归器中得到N+1个验证结果;S4:基于加权融合机制确定每个回归器对应的最佳权重(w0,w1,…,wN);S5:获取测试数据,先将测试样本与每一层的样本空间进行欧氏距离相似性计算,从而将该测试样本转化为该层样本空间与之最相似的样本,再将这些样本分别送入步骤S2所得的N+1个回归器以及步骤S4所得的每个回归器对应的最佳权重得到最终的预测结果。 

关 键 词: 

法律状态: 

IPC专利分类号:G16H50/70;G06K9/62