浏览量:0

基于视觉皮层处理机制及脉冲监督学习的图像分类方法

专利类型:发明专利 

语 言:中文 

申 请 号:CN201810219090.1 

申 请 日:20180316 

发 明 人:李秀敏罗胜元薛方正 

申 请 人:重庆大学 

申请人地址:400030 重庆市沙坪坝区沙正街174号 

公 开 日:20180817 

公 开 号:CN201810219090.1 

代 理 人:吴彬 

代理机构:重庆信航知识产权代理有限公司 50218 

摘  要:本发明公开了一种基于视觉皮层处理机制及脉冲监督学习的图像分类方法,包括步骤:1)以动态图片的形式输入图像,然后在三个不同的时空尺度下处理输入;2)求取V1层简单型神经元的响应;3)求取V1层复杂型神经元的响应;4)求取V4层神经元的响应;5)训练输出层连接;6)输入测试样本。本发明的图像分类过程更接近于真实大脑的处理过程,并且本图像分类方法能较好地提取出输入图像的局部朝向信息,从而可以较好地进行图像分类。而且本方法只需要训练输出层的连接,不需要逐层训练,具有较高的效率。该方法在手写数字集上的分类准确率为96%左右,分类准确率高。 

主 权 项:1.基于视觉皮层处理机制及脉冲监督学习的图像分类方法,其特征在于:包括以下步骤:1)以动态图片的形式输入图像,图像被表达成关于图片像素位置(x,y)和时间t的光强分布I(x,y,t);然后在三个不同的时空尺度r=0,1,2下处理输入,第一个尺度r=0,此时的输入等同于原始输入,另外两个尺度需要连续地使用一个高斯核函数对上一尺度的输入进行模糊化;三种输入Ir(x,y,t)表达成:I0(x,y,t)=I(x,y,t)其中*表示卷积运算,然后使用一个三维高斯滤波器对输入进行滤波:其中σV1simple=1.25;2)求取V1层简单型神经元的响应,V1层简单型神经元被建模为线性的28个空间?时间?方位滤波器波器,其感受野为一高斯函数的三阶导数;将V1层简单型神经元集群的第k个滤波器描述为一个和该滤波器方向平行的单位向量uk=(uk,x,uk,y,uk,t),k=1,2,...,28,只有当输入对应的朝向和滤波器方向相同时,这个滤波器才会被激活;然后在空间位置(x,y)拥有空间?时间方位k的简单型神经元的线性响应为:其中X=3?Y?T,T和Y为求和变量,X、Y、T的取值范围为[0,3],且三者之和等于3,av1lin=6.6048;把线性响应Lk,r归一化到一条高斯包络线内便得到简单型神经元的响应:其中αfilt2rate,r=15Hz将无单位的滤波器响应转换为神经元的放电频率,αV1rect=1.9263,αV1norm=1,σV1norm=3.35,αV1semi=0.1;3)求取V1层复杂型神经元的响应,对简单型神经元的响应做局部加权求和即可得到复杂型神经元的响应:其中αV1cormlex=0.1,σV1complex=1.6;最终所求取到的复杂型神经元的响应为神经元的平均放电频率;4)求取V4层神经元的响应,V1层复杂型神经元将通过频率为上述所求得的平均放电频率的泊松过程产生脉冲,并通过突触传递给V4层神经元;V4层神经元的模型为Izhikevich脉冲神经元:其中v(t)为神经元的膜电位,u(t)为恢复变量,Isyn(t)为突触前神经元产生的突触电流;当v(t)≥30mV时,神经元会产生一个脉冲,并触发重置:v(t)=c,u(t)=u(t)+d;对于兴奋型神经元:a=0.02,b=0.2,c=?65,d=8;对于抑制型神经元:a=0.1,b=0.2,c=?65,d=2;V1层复杂型神经元到V4层的连接为高斯连接,即两神经元空间距离越大,则有连接的概率会越小,且属于相同滤波器的神经元之间共享权值;V4层共有4个神经元集群,分别对应4个朝向:水平、右对角、竖直和左对角,同一个集群的神经元只对自身偏好的输入朝向有较强的响应,而对其他朝向的输入的响应较弱;且集群之间存在相互抑制;通过计算V4层神经元的平均放电频率来表示所提取到的输入朝向信息;5)训练输出层连接,输出层神经元模型为LIF神经元:其中ti表示第i个传入神经元的脉冲时间,wi表示连接强度,Vrest=0,V0=2.12,τ1=16ms,τ2=4ms;当V(t)≥1时,神经元产生脉冲,然后V(t)会被重置为Vrest;输出层神经元的个数等于图像的类别数,当输入样本属于类1时,要求第一个输出神经元放电而其他神经元保持沉默,以此类推;把正确的输出放电模式记为P+,错误的记为P?;如果没有输出脉冲来响应P+模式,那么对应输出神经元的连接将会得到增强:其中tmax表示V(t)达到最大值时对应的时刻,λ为学习率;相反地,如果有输出脉冲去响应P?模式,那么对应的连接将会减小Δwi;wi的值是随机初始化的,然后由Δwi进行调节;6)输入测试样本,由训练好的输出层连接,求得每个输出神经元的膜电位V(t),哪一个神经元的膜电位最大,则把输入样本判为其对应的类。 

关 键 词:图像分类;神经元;分类准确率;处理机制;视觉皮层;输入图像;输出层;脉冲;响应;动态图片;手写数字;输入测试;样本;大脑;尺度;监督;时空;学习 

法律状态:公开 

IPC专利分类号:G06K9/62;G06K9/00;G06K9/46;G06K9/00;G;G06;G06K;G06K9;G06K9/62;G06K9/00;G06K9/46;G06K9/00