专利类型:发明专利
语 言:中文
申 请 号:CN201310184862.X
申 请 日:20130517
申 请 人:重庆大学
申请人地址:400044 重庆市沙坪坝区沙正街174号
公 开 日:20130731
公 开 号:CN103226196A
代 理 人:张先芸
代理机构:重庆博凯知识产权代理有限公司 50212
摘 要:本发明提供了一种基于稀疏特征的雷达目标识别方法,该方法以雷达目标图像的稀疏特征作为雷达目标图像训练样本和待测雷达目标的识别特征,帮助提升雷达目标识别的数据针对性并减少数据处理运算量,再通过训练样本的稀疏特征构建待测雷达目标的稀疏线性方程,然后通过贝叶斯压缩感知算法求解稀疏线性方程,借助压缩感知理论实现对待测雷达目标的识别,不需要借助目标方位角估计,降低了识别复杂程度,避免了识别准确性对目标方位角估计的依赖,同时基于压缩感知理论进行雷达目标识别在噪声环境下也具有良好的识别性能,从而解决了现有技术中雷达目标识别系统较为复杂、识别准确性有限的问题,达到提高雷达目标识别的处理效率和识别准确性的目的。
主 权 项:基于稀疏特征的雷达目标识别方法,其特征在于,包括如下步骤:A)针对多类不同的已知雷达目标,分别采集多个已知雷达目标图像作为训练样本,并分别提取各个类别中各个训练样本的稀疏特征矩阵;B)将步骤A提取的每个训练样本的稀疏特征矩阵作为一个稀疏特征训练样本,从而由步骤A提取的各个类别各个训练样本的稀疏特征矩阵的集合构成稀疏特征训练样本集;C)针对待测雷达目标,采集待测雷达目标图像,提取待测雷达目标图像的稀疏特征矩阵;D)利用稀疏特征训练样本集中个各个稀疏特征训练样本建立稀疏线性方程,对待测雷达目标图像的稀疏特征矩阵进行稀疏线性表示,并采用贝叶斯压缩感知算法求解得到该稀疏线性方程的系数向量;E)分别提取步骤D所得系数向量对应于稀疏特征训练样本集中每一类已知雷达目标的稀疏系数向量,然后分别计算对应于每一类已知雷达目标的稀疏系数向量的L2范数值,将L2范数值最大的稀疏系数向量所对应的一个已知雷达目标类别判定为待测雷达目标所属的雷达目标类别,实现对待测雷达目标的识别。
关 键 词:
法律状态:
IPC专利分类号:G01S7/41